Skip to content

GEMS: Citing research

Example of research using and citing GEMS


GEM Convex Programming Approach and IPM Algorithm

  • Kulik D.A., Wagner T., Dmytrieva S.V., Kosakowski G., Hingerl F.F., Chudnenko K.V., Berner U. (2013): GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences 17, 1-24. DOI.
  • Wagner T., Kulik D.A., Hingerl F.F., Dmytrieva S.V. (2012): GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Canadian Mineralogist 50(5), 1173-1195. DOI.
  • Chudnenko, K.V. (2010): Thermodynamic modeling in geochemistry: the theory, the algorithms, the software, the applications. Academic Publishing House GEO, Novosibirsk (in Russian).
  • Kulik D.A. (2006): Dual-thermodynamic estimation of stoichiometry and stability of solid solution end members in aqueous-solid solution systems. Chemical Geology 225(2-3), 189–212.
  • Karpov I.K., Chudnenko K.V., Kulik D.A., Bychinskii V.A. (2002): The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling. American Journal of Science 302, 281-311.
  • Kulik D.A. (2002): Gibbs energy minimization approach to model sorption equilibria at the mineral-water interface: Thermodynamic relations for multi-site-surface complexation. American Journal of Science 302, 227-279.
  • Karpov I.K., Chudnenko K.V., Kulik D.A., Avchenko O.V., Bychinski V.A. (2001): Minimization of Gibbs free energy in geochemical systems by convex programming. Geochemistry International 39(11), 1108-1119.
  • Karpov I.K., Chudnenko K.V., Kulik D.A. (1997): Modeling chemical mass-transfer in geochemical processes: Thermodynamic relations, conditions of equilibria and numerical algorithms. American Journal of Science 297, 767-806.

Authors' Applications of GEMS Thermodynamic Modelling

  • Liu X,, Vinograd V.L., Nichenko S., Kulik D.A., Lu X., Winkler B. (2019): Emulation of short-range ordering within the Compound Energy Formalism: Application to the calcite-magnesite solid solution. Calphad 64, 115-125. doi.
  • Weibel G., Eggenberger U., Kulik D.A., Hummel W., Schlumberger S., Klink W., Fisch M., Mäder U.K. (2018): Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Management 76, 457-471. doi.
  • Vinograd V.L., Kulik D.A., Brandt F., Klinkenberg M., Weber J., Winkler B., Bosbach D. (2018): Thermodynamics of the solid solution - aqueous solution system (Ba,Sr,Ra)SO4 + H2O: I. The effect of strontium content on radium uptake by barite. Applied Geochemistry 89, 59-74. doi.
  • Vinograd V.L., Kulik D.A., Brandt F., Klinkenberg M., Weber J., Winkler B., Bosbach D. (2018): Thermodynamics of the solid solution - aqueous solution system (Ba,Sr,Ra)SO4 + H2O: II. Radium retention in barite-type minerals at elevated temperatures. Applied Geochemistry 93, 190-208. doi.
  • Hingerl F.F., Wagner T., Kulik D.A., Thomsen K., Driesner T. (2014): A new aqueous activity model for geothermal brines in the system Na-K-Ca-Mg-H-Cl-SO4-H2O from 25 to 300 °C. Chemical Geology 381, 78-93. doi.
  • Lanari P., Wagner T., Vidal O. (2014): A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry. Contributions to Mineralogy and Petrology 167:968, 19 p. doi.
  • Thien B.M.J., Kulik D.A., Curti E. (2014): A unified approach to model uptake kinetics of trace elements in complex aqueous – solid solution systems. Applied Geochemistry 41, 135-150. doi.
  • Degueldre C., Pin S., Poonoosamy J., Kulik D.A. (2014): Redox state of plutonium in irradiated mixed oxide fuels. Journal of Physics and Chemistry of Solids 75, 358-365. doi.
  • Thien B.M.J., Kulik D.A., Curti E. (2013): Modeling trace element uptake kinetics in secondary minerals. Procedia Earth and Planetary Science 7, 838-841.
  • Berner U., Kulik D.A., Kosakowski G. (2013): Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste. Physics and Chemistry of the Earth 64, 46-56. doi.
  • Shao H., Kosakowski G., Berner U., Kulik D.A., Mäder U., Kolditz O. (2013): Reactive transport modeling of the clogging process at Maqarin natural analogue site. Physics and Chemistry of the Earth 64, 21-31. doi.
  • Orlov A., Kulik D.A., Degueldre C., Oliver L. (2012): Thermodynamic modelling of the processes in a boiling water reactor to buildup the magnetic corrosion product deposits. Corrosion Science 64(1), 28-36. doi.
  • Aimoz L., Kulik D.A., Wieland E., Curti E., Lothenbach B., Maeder U. (2012): Thermodynamics of AFm-(I2,SO4) solid solution and its end-members in aqueous media. Applied Geochemistry 27(10), 2117-2129. doi.
  • Gaona X., Kulik D.A., Mace N., Wieland E. (2011): Aqueous-solid solution thermodynamic model of U(VI) uptake in C-S-H phases. Applied Geochemistry 27(1), 81-95. doi.
  • Kulik D.A. (2002): Sorption modelling by Gibbs energy minimisation: Towards a uniform thermodynamic database for surface complexes of radionuclides. Radiochimica Acta 90, 815-832.
  • Kulik D.A. (2000): Thermodynamic properties of surface species at the mineral-water interface to hydrothermal conditions: A Gibbs energy minimization Triple-Layer model of rutile in NaCl electrolyte to 250 °C. Geochimica et Cosmochimica Acta 64(18), 3161-3179; Errata: 2001, 65(12), 2027.
  • Kulik D.A., Aja S.U., Sinitsyn V.A. and Wood S.A. (2000): Acid-base surface chemistry and sorption of some lanthanides on K+ saturated Marblehead illite: II. A multi-site-surface complexation modeling. Geochimica et Cosmochimica Acta 64(2), 195-213.

Reactive Transport Modelling using GEMS3K Coupled Codes

  • Yapparova A., Miron G.D., Kulik D.A., Kosakowski G., Driesner T. (2019): An advanced reactive transport simulation scheme for hydrothermal systems modelling. Geothermics 78, 138-153. doi.
  • Leal A.M.M., Kulik D.A., Saar M.O. (2017): Ultra-fast reactive transport simulations when chemical reactions meet machine learning: Chemical equilibrium. E-print 1708.04825, arxiv.org.
  • Yapparova A., Gabellone T., Whitaker F., Kulik D.A., Matthai S. (2017): Reactive transport modelling of hydrothermal dolomitisation using the CSMP++GEM coupled code: Effects of temperature and geological heterogeneity. Chemical Geology 466, 562-574. doi.
  • Yapparova A., Gabellone T., Whitaker F., Kulik D.A., Matthai S. (2017): Reactive transport modelling of dolomitisation using the new CSMP++GEM coupled code: governing equations, solution method and benchmarking results. Transport in Porous Media 117, 385-413. doi.
  • Berner U., Kulik D.A., Kosakowski G. (2013): Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste. Physics and Chemistry of the Earth (on web), doi.
  • Shao, H., Kosakowski, G., Berner, U., Kulik, D.A., Maeder, U., Kolditz, O. (2012): Reactive transport modeling of the clogging process at Maqarin natural analogue site Physics and Chemistry of the Earth (on web), doi.
  • Shao H., Kulik D.A., Berner U., Kosakowski G., Kolditz O. (2009): Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column. Geochemical Journal 43, e37-e42.
  • Shao H., Dmytrieva S.V., Kolditz O., Kulik D.A., Pfingsten W., Kosakowski G. (2009): Modeling reactive transport in non-ideal aqueous–solid solution system. Applied Geochemistry 24, 1287-1300.

Parameter Fitting and the GEMSFITS Code

  • Miron G.D., Wagner T., Kulik D.A., Lothenbach B. (2017): An internally consistent thermodynamic dataset for aqueous species in the system Ca-Mg-Na-K-Al-Si-O-H-C-Cl to 800 oC and 5 kbar. American Journal of Science 317, 754-805. doi
  • Miron G.D., Wagner T., Kulik D.A., Heinrich C.A. (2016): Internally consistent thermodynamic data for aqueous species in the system Na-K-Al-Si-O-H-Cl. Geochimica et Cosmochimica Acta 187, 41-78. doi.
  • Miron G.D., Kulik D.A., Dmytrieva S.V., Wagner T. (2015): GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling. Applied Geochemistry 55, 28-45. doi.
  • Hingerl F.F., Kosakowski G., Wagner T., Kulik D.A., Driesner T. (2014): GEMSFIT: a generic fitting tool for geochemical activity models. Computational Geosciences 18, 227-242., doi.

Education and Other GEM Frameworks and Applications

  • Leal A.M.M., Kulik D.A., Smith W.R., Saar M.O. (2017): An overview of computational methods for chemical equilibrium and kinetics calculations for geochemical and reactive transport modeling. Pure and Applied Chemistry 89, 597-643. doi.
  • Leal A.M.M., Kulik D.A., Kosakowski G., Saar M.O. (2016). Computational methods for reactive transport modeling: An extended law of mass-action, xLMA, method for multiphase equilibrium calculations. Advances in Water Resources 96, 405-422. doi.
  • Leal A.M.M., Kulik D.A., Saar M.O. (2016): Enabling Gibbs energy minimization algorithms to use equilibrium constants of reactions in multiphase equilibrium calculations. Chemical Geology 437, 170-181. doi.
  • Leal A.M.M., Kulik D.A., Kosakowski G. (2016): Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations. Advances in Water Resources 88, 231-240. doi.
  • Leal A.M.M., Blunt M.J., LaForce T.C. (2014): Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling. Geochimica et Cosmochimica Acta 131, 301 - 322. doi.
  • Hurtig N.C., Williams-Jones A.E. (2014): An experimental study of the transport of gold through hydration of AuCl in aqueous vapour and vapour-like fluids. Geochimica et Cosmochimica Acta 127, 305 - 325. doi.
  • Aimoz L., Wieland E., Kulik D.A., Lothenbach B., Glaus M.A., Curti E. (2013): Characterization and solubility determination of the solid-solution between AFm-I2 and AFm-SO4. Chapter 6 in F. Bart et al. (eds.), Cement-Based Materials for Nuclear Waste Storage, Springer, p. 57-65.
  • Kulik D.A. (2010): Geochemical thermodynamic modelling of ion partitioning. Chapter 3 in: Ion-partitioning in ambient-temperature aqueous systems (eds. M.Prieto, H.Stoll), EMU Notes in Mineralogy, 10, 65-138.
  • Kulik D.A. (2009): Thermodynamic concepts in modeling sorption at the mineral-water interface. In: Thermodynamics and Kinetics of Water-Rock Interactions (Eds. E.H.Oelkers, J.Schott), Reviews in Mineralogy and Geochemistry 70, 125-180.
  • Bruno J., Bosbach D., Kulik D., Navrotsky A. (2007): Chemical thermodynamics of solid solutions of interest in radioactive waste management: A state-of-the art report, Eds. F.J.Mompean, M.Illemassene, J.Perrone, Chemical Thermodynamics Series Vol. 10, Paris, OECD, 292 p.
  • Kersten M., Kulik D.A. (2005): Thermodynamic modeling of trace element partitioning in the environment: New concepts and outlook. Chapter 3.1 in: Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine & Occupational Health, Eds. R. Cornelis et al., London, John Wiley & Sons, p.651 - 689.
  • Kulik D., Berner U., Curti E. (2004): Modelling chemical equilibrium partitioning with the GEMS-PSI code. In: PSI Scientific Report 2003 / Volume IV, Nuclear Energy and Safety (edited by B.Smith and B.Gschwend), Paul Scherrer Institute, Villigen, Switzerland, March 2004, p.109-122 (ISSN 1423-7334)

Publications of Collaborators and Developers of Specific Databases

MINES Data base and Applications in lithogeochemistry of hydrothermal ore deposits

  • Pierre S., Gysi A.P., Monecke, T. (2018) Fluid chemistry of mid-ocean ridge hydrothermal vents: A comparison between numerical modeling and vent geochemical data. Geofluids, Article ID 1389379, 20 p. doi.
  • Perry, E., Gysi A.P. (2018) Rare Earth Elements in Mineral Deposits: Speciation in Hydrothermal Fluids and Partitioning in Calcite. Geofluids 89, 581-596.
  • Gysi, A.P. (2017) Numerical simulations of CO2 sequestration in basaltic rock formations: challenges for optimizing mineral-fluid reactions. Pure and Applied Chemistry 89, 581-596. doi.
  • Gysi A.P., Williams-Jones A.E., Harlov D. (2015) The solubility of xenotime-(Y) and other HREE phosphates (DyPO4, ErPO4 and YbPO4) in aqueous solutions from 100 to 250 °C and psat. Chemical Geology 401, 83-95. doi.
  • Gysi, A.P., Williams-Jones, A.E. (2013) Hydrothermal mobilization of pegmatite-hosted Zr and REE at Strange Lake, Canada: A reaction path model. Geochimica et Cosmochimica Acta 122, 324-352.

CEMDATA Data base and Applications in cement and concrete chemistry

  • Lothenbach B., Kulik D.A., Matschei T., Balonis M., Baquerizo L., Dilnesa B.Z., Miron G.D., Myers R. (2019): Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cement and Concrete Research 115, 472-506. doi.
  • Bernard, E., Lothenbach, B., Cau-Dit-Coumes, C., Chlique, C., Dauzères, A., & Pochard, I. (2018). Magnesium and calcium silicate hydrates, part I: investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate (M-S-H). Applied Geochemistry, 89, 229-242. doi.
  • Bernard, E., Dauzères, A., & Lothenbach, B. (2018). Magnesium and calcium silicate hydrates, part II: Mg-exchange at the interface "low-pH" cement and magnesium environment studied in a C-S-H and M-S-H model system. Applied Geochemistry, 89, 210-218. doi.
  • FernĂĄndez, Á., Lothenbach, B., Cruz Alonso, M., & GarcĂ­a Calvo, J.L. (2018). Thermodynamic modelling of short and long term hydration of ternary binders. Influence of Portland cement composition and blast furnace slag content. Construction and Building Materials, 166, 510-521. doi.
  • Kunther, W., & Lothenbach, B. (2018). Improved volume stability of mortar bars exposed to magnesium sulfate in the presence of bicarbonate ions. Cement and Concrete Research, 109, 217-229. doi.
  • Le SaoĂťt, G., Lothenbach, B., Taquet, P., Fryda, H., & Winnefeld, F. (2018). Hydration of calcium aluminate cement blended with anhydrite. Advances in Cement Research, 30(1), 24-36. doi.
  • Adu-Amankwah, S., Zajac, M., Stabler, C., Lothenbach, B., & Black, L. (2017). Influence of limestone on the hydration of ternary slag cements. Cement and Concrete Research, 100, 96-109. doi.
  • Bernard, E., Lothenbach, B., Le Goff, F., Pochard, I., & Dauzères, A. (2017). Effect of magnesium on calcium silicate hydrate (C-S-H). Cement and Concrete Research, 97, 61-72. doi.
  • Bernard, E., Lothenbach, B., Rentsch, D., Pochard, I., & Dauzères, A. (2017). Formation of magnesium silicate hydrates (M-S-H). Physics and Chemistry of the Earth, 99, 142-157. doi.
  • Chitvoranund, N., Winnefeld, F., Hargis, C.W., Sinthupinyo, S., & Lothenbach, B. (2017). Synthesis and hydration of alite-calcium sulfoaluminate cement. Advances in Cement Research, 29(3), 101-111. doi.
  • Hargis, C.W., Lothenbach, B., MĂźller, C.J., & Winnefeld, F. (2017). Carbonation of calcium sulfoaluminate mortars. Cement and Concrete Composites, 80, 123-134. doi.
  • Lothenbach, B., & Winnefeld, F. (2017). Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements. In H. PĂśllmann (Ed.), Cementitious materials. Composition, properties, application (pp. 103-143). Berlin: De Gruyter. doi.
  • Lothenbach, B., Bernard, E., & Mäder, U. (2017). Zeolite formation in the presence of cement hydrates and albite. Physics and Chemistry of the Earth, 99, 77-94. doi.
  • Martin, L.H.J., Winnefeld, F., Tschopp, E., MĂźller, C.J., & Lothenbach, B. (2017). Influence of fly ash on the hydration of calcium sulfoaluminate cement. Cement and Concrete Research, 95, 152-163. doi.
  • Shi, Z., Geiker, M.R., Lothenbach, B., De Weerdt, K., Ferreiro GarzĂłn, S., Enemark-Rasmussen, K., & Skibsted, J. (2017). Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cement and Concrete Composites, 78, 73-83. doi.
  • Shi, Z., Geiker, M.R., De Weerdt, K., Østnor, T.A., Lothenbach, B., Winnefeld, F., & Skibsted, J. (2017). Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends. Cement and Concrete Research, 95, 205-216. doi.
  • Dauzeres, A., Achiedo, G., Nied, D., Bernard, E., Alahrache, S., & Lothenbach, B. (2016). Magnesium perturbation in low-pH concretes placed in clayey environment—solid characterizations and modeling. Cement and Concrete Research, 79, 137-150. doi.
  • L'HĂ´pital, E., Lothenbach, B., Scrivener, K., & Kulik, D.A. (2016). Alkali uptake in calcium alumina silicate hydrate (C-A-S-H). Cement and Concrete Research, 85, 122-136. doi.
  • L'HĂ´pital, E., Lothenbach, B., Kulik, D.A., & Scrivener, K. (2016). Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate. Cement and Concrete Research, 85, 111-121. doi.
  • Shi, Z., Lothenbach, B., Geiker, M.R., Kaufmann, J., Leemann, A., Ferreiro, S., & Skibsted, J. (2016). Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cement and Concrete Research, 88, 60-72. doi.
  • Kunther, W., Lothenbach, B., & Skibsted, J. (2015). Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cement and Concrete Research, 69, 37-49. doi.
  • Myers R.J., L'HĂ´pital E., Provis J.L., Lothenbach B. (2015): Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions. Cement Concrete Res. 68, 83-93. doi.
  • Myers R.J., Bernal S.A., Provis J.L. (2014): A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation. Cement Concrete Res. 66, 27-47. doi.
  • Dilnesa B.Z., Lothenbach B., Renaudin G., Wichsler A., Kulik D. (2014): Synthesis and characterization of hydrogarnet Ca3(AlxFe1-x)2(SiO4)y(OH)4(3-y). Cement Concrete Res. 59, 96-111. doi.
  • Kunther,W.; Lothenbach,B.; Scrivener,K. (2013): Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions. Cement Concrete Res. 44, 77-86
  • Deschner,F.; Lothenbach,B.; Winnefeld,F.; Neubauer,J. (2013): Effect of temperature on the hydration of Portland cement blended with siliceous fly ash. Cement and Concrete Res. 43, 169-181.
  • Ben Haha,M.; Lothenbach,B.; Le SaoĂťt,G.; Winnefeld,F. (2012): Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part II: Effect of Al2O3. Cement Concrete Res. 42, 74-83.
  • Deschner,F.; Winnefeld,F.; Lothenbach,B.; Seufert,S.; Schwesig,P.; Dittrich,S.; Goetz-Neunhoeffer,F.; Neubauer,J. (2012): Hydration of Portland cement with high replacement by siliceous fly ash. Cement Concrete Res. 42, 1389-1402.
  • Damidot, D., Lothenbach, B., Herfort, D., Glasser, F.P. (2011): Thermodynamics and cement science, Cement and Concrete Research, 41(7), 679-695.
  • Bullard, J. W., Lothenbach, B., Stutzman, P., Snyder, K. A. (2011): Coupling thermodynamic and digital image models to simulate hydration and microstructure development of Portland cement pastes. Journal of Materials Research, 26(4), 609-622.
  • Lothenbach, B. (2010): Thermodynamic equilibrium calculations in cementitious systems. Materials and Structures 43(10), 1413-1433.
  • Lothenbach, B., Damidot, D., Matschei, T., Marchand, J. (2010): Thermodynamic modelling: state of knowledge and challenges. Advances in Cement Research, 22(4), 211-223.
  • Loser, R., Lothenbach, B., Leemann, A., Tuchschmid, M. (2010): Chloride resistance of concrete and its binding capacity – comparison between experimental results and thermodynamic modeling, Cement and Concrete Composites 32(1), 34-42.
  • Winnefeld, F., Lothenbach, B. (2010): Hydration of calcium sulfoaluminate cements – experimental findings and thermodynamic modelling. Cement and Concrete Research, 40(8), 1239-1247.
  • Schmidt, T., Lothenbach, B., Romer, M., Neuenschwander, J., Scrivener, K. (2009): Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements, Cement and Concrete Research 39(12), 1111-1121.
  • Moeschner, G., Lothenbach, B., Figi, R., Kretzschmar, R. (2009): Influence of citric acid on the hydration of Portland cement. Cement and Concrete Research 39(4), 275-282.
  • Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Figi, R., Ko, S. C., Adler, M., Maeder, U. (2008): Hydration mechanisms of super sulphated slag cement, Cement and Concrete Research 38(7), 983-992.
  • Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K. (2008), Influence of limestone on the hydration of Portland cements, Cement and Concrete Research 38(6), 848-860.
  • Moeschner, G., Lothenbach, B., Winnefeld, F., Ulrich, A., Figi, R., Kretzschmar R. (2008): Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1-xFex(OH)6]2(SO4)3 26H2O), Cement and Concrete Research 39(6), 482-489.
  • Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008): A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research 38(3), 337–349.
  • Moeschner, G., Lothenbach, B., Rose, J., Ulrich, A., Figi, R., Kretzschmar R. (2008): Solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 26H2O), Geochimica et Cosmochimica Acta 72(1), 1-18.
  • Lothenbach B., Matschei T., Moeschner G., Glasser F.P. (2008): Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cement and Concrete Research 38, 1-18.
  • Lothenbach, B., Gruskovnjak A. (2007), Hydration of alkali-activated slag: thermodynamic modelling, Advances in Cement Research 19(2), 81-92.
  • Matschei T., Lothenbach B., Glasser F.P. (2007): Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O, Cement and Concrete Research 37, 1379-1410.
  • Matschei, T., Lothenbach, B., Glasser, F. (2007), The role of calcium carbonate in cement hydration, Cement and Concrete Research 37(4), 551-558.
  • Matschei, T., Lothenbach, B., Glasser, F. (2007), The AFm phase in Portland cement, Cement and Concrete Research 37(2), 118-130.
  • Lothenbach, B. and Wieland, E. (2006), A thermodynamic approach to the hydration of sulphate-resisting Portland cement, Waste Management 26(7), 706-719.
  • Lothenbach B., Winnefeld F. (2006): Thermodynamic modelling of the hydration of Portland cement, Cement and Concrete Research 36, 209-226
  • Lothenbach B., Wieland E. (2006): A thermodynamic approach to the hydration of sulphate-resisting Portland cement, Waste Management 26, 706-719.

HERACLES Data Base and Applications in Nuclear Engineering

  • Shcherbina N., Kulik D., Kivel N., Potthast H., GĂźnther-Leopold I. (2013): Partitioning of fission products from irradiated nitride fuel using inductive vaporization. Proc. Int. Conf. Global-2013.