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Temperature, pressure and composition corrections for molar thermody-
namic properties of non-electrolyte fluids and their mixtures 
 
Contributed by Sergey V. Churakov (Centro Swizzero di Calcolo Scientifico (CSCS), Via Cantonale, 
CH-6928 Manno, Switzerland, e-mail: churakov@cscs.ch) 
  
 
Theoretical Background 
Strong intermolecular interaction in real multi-component fluids is responsible for their non-
ideal behavior. Types of interactions involve repulsion due to a finite size of the molecules, at-
traction between permanent and induced dipoles, quadrupole and higher multipoles, and disper-
sion forces. In the case of permanently charged molecules, Coulomb interaction forces must be 
taken into account. Knowing intermolecular interaction forces between molecules, one can cal-
culate thermodynamic properties of the fluid, at least in principle. 

The equation of state proposed by Churakov and Gottschalk (2003a; b) is designed to predict 
thermodynamic properties of multi-component mixtures of non-electrolytes. In that model, in-
termolecular interaction is approximated by Lennard-Jones potential, dipole-dipole and dipole 
induced dipole interaction: 
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Here rij is the distance between the centers of two molecules, θ and φ are the angles defining 
the relative orientation of its dipoles, α is the average polarizability of a molecule and μ its di-
pole moment. The σij and εij are the specific parameters of interaction of the Lennard-Jones po-
tential meaning of molecular size and interaction energy, respectively. For unlike molecules, 
the parameters of cross interaction are determined as arithmetic and geometric mean: 
 

σ ij =
σ i + σ j

2
          (5) 

εij = (εiε j)
1/ 2           (6) 

Thus, for every component in the fluid mixture, just four fitting parameters (σi, εi, μ i and α i) 
are required. The parameters used in the EoS are listed in the Appendix 1. 

The molar residual Helmholtz free energy Ares of fluid mixture interacting according to equa-
tions (1)-(4) at constant temperature-T and density-ρ is derived using thermodynamic perturba-
tion theory (Carnahan and Starling, 1969; Gubbins and Twu, 1978; Shmulovich et al., 1982; 
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Stell et al., 1972,1974; Tereshchenko et al. 1981; Verlet and Weis, 1972a, 1972b; Weeks et al., 
1971), as sum of Lennard-Jones, dipole-dipole and dipole-induced dipole interaction: 
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where ni is the number of moles of molecule i. The detailed expressions for these contributions 
can be found elsewhere (Churakov and Gottschalk, 2003a; b). 

The compressibility Z is obtained from the above equation by differentiation with respect to 
density: 
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where P is the pressure and R is the universal gas constant. 

The fugacity coefficient ϕi of component i is obtained by differentiation of the residual Helm-

holtz free energy Ares=Ares(T,ρ,n1,n2,...) with respect to the fluid composition: 
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where ni is the number of moles of molecule i.  

To calculate fugacities in the fluid mixture at isothermal-isobaric conditions, the corresponding 
fluid density must be found first solving eqn (8) iteratively. Then the fugacity coefficients are 
calculated from eqn (9) at given temperature and density.  

The CG EoS calculations outlined above were implemented as a set of C++ classes and func-
tions, either available separately from the author, or incorporated into GEM-Selektor code (ver-
sion 2.1-PSI or higher). Details on temperature and pressure corrections for the standard molar 
properties of pure fluid components, pertinent to the implementation in GEM-Selektor code, 
are given in Appendix 2. Briefly, the fugacities of pure fluid species are calculated first at T,P 
of interest before starting the GEM calculation of chemical equilibrium in the system. Then, on 
each GEM iteration, some built-in CG EoS functions are called to obtain the activity coeffi-
cients of fluid components in the non-ideal fluid mixture phase from their current mole quanti-
ties (Appendix 3).   
 
Limitations of the CG EOS 
The EoS is just a model! Do not expect it to be universal. It uses approximations that can be 
appropriate for one system and unacceptable for another. For pure fluids, both homogeneous 
region and vapor-liquid equilibria are reproduced accurately. While the EoS is robust for ho-
mogeneous fluid mixtures, the agreement with the experimental vapor-liquid equilibria is quali-
tative. Therefore, we recommend applying EoS for mixtures only above highest critical tem-
perature of fluid components in the system (see Appendix 2). At lower temperatures, the results 
must be considered only qualitatively. The applicability of the EoS at high pressure is limited 
by solidification of the fluid. Although solid-fluid phase boundary is not known for arbitrary 
composition, we recommend to limit application of the EoS by 10GPa. Every substance be-
comes ionised at high temperatures. This is not taken into account in our model. Therefore, we 
suggest 2000 K to be a highest temperature limit for the EoS. The fluid chemistry is responsible 
for the other limitations of the EoS.  
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The first question to be addressed in any thermodynamic calculation is whether the fluid speci-
ation in the thermodynamic model adequately represents the natural system of interest. Let us 
consider H-O-S system as an example. At high temperatures, above critical temperature of wa-
ter, fluids in that system can be represented by a mixture of H2O, H2, SO2, O2, H2S, SO3, S2 
molecules. At the ambient conditions, however, various sulphuric acids will be formed. There-
fore, the particles like SO4

2-, SO3
2-, H3O+ and HSO3

- must be included in the system. Those 
species are not available in the present EoS. Thus, no matter how accurately the EoS repro-
duces properties of H2O, H2, SO2, O2, H2S, SO3, S2, the model is inadequate for modelling 
thermodynamic properties of the H-O-S system at ambient conditions.  

The second question is the accuracy of the EoS itself. The EoS presented includes the following 
simplifications. Firstly, the molecules are treated as Lennard-Jones spheres with a permanent 
point-dipole moment. However, typical poly-atomic molecules also possess quadrupole and 
higher order moments leading to dipole-quadrupole, quadrupole-quadrupole, induced dipole–
quadrupole and other interactions. The polarizability of complex molecules depends substan-
tially on their orientation with respect to the applied electric field, while the EoS takes only the 
average isotropic polarizability into account. Additional interactions between some molecules 
will occur if the intermolecular distance is short and the electron shells overlap. Contributions 
of such forces to the total interaction energy could be significant for some species. In general, 
there are more physically realistic model potentials available than those used here. Potentials 
using non-spherical cores are definitely more successful at very high pressures, as well as the 
exponential potentials mimic the intermolecular repulsion better. The reasons for using the po-
tential described above are rather practical. Theoretical EoSs for non-spherical molecules are 
available only for rigid-body models. However, while many results from molecular dynamics 
and Monte Carlo calculations are available using more accurate potentials for these, no appro-
priate EoS have been developed. And from our point of view the rigid-body potential model is 
a significant drawback comparing to a more simple Lennard-Jones fluid.  

The intermolecular interactions are treated here to be pair additive. In real fluids, the interaction 
energy of three and more molecules differs from the sum of the pair-wise contributions. But 
this difference is substantial only if all interacting molecules are close together. In low-density 
fluids the probability of simultaneous collision of more than two molecules is low, allowing 
higher order interactions to be neglected at such conditions. To use the pair additive model at 
high densities, triple- and higher order interactions must be included in the pair interaction term 
implicitly, which is called the effective pair-wise potential. While such effective pair-wise po-
tentials would lead to an accurate description of the fluids at the high and intermediate densi-
ties, for low densities these are less accurate. 

Yet another problem is that the perturbation expansion is only reasonable if the properties of 
the target fluid are close to that of the reference system. In our particular case, this requires that 
the energy due to dipole-dipole interaction is small relative to the contribution due to Lennard-
Jones interaction. Computer experiments showed (Stell et al., 1972) that the perturbation ex-
pansion in the proposed form will be very accurate if the square of the reduced dipole moment 

 μ*2=μ2/(εσ3)        (10) 

is lower than 3, less accurate in the range of 3 < μ*2 < 4, and inaccurate for values greater than 
4. The squares of reduced dipole moments of slightly polar compounds like CO and HCl are 
smaller than 3, but for strong dipoles like H2O it is in the range of 3<μ*2<4 or even larger. The 
dipole moment of molecules in fluids changes with temperature, density and fluid composition, 
while it is treated here, with the exception of H2O, as being constant. At high temperatures 
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(above critical point), molecules are free to rotate, and the dipole interaction eventually be-
comes less important even for highly polar molecules. Special care must be taken, however, in 
cases when the thermodynamic conditions of interest are close or lower then critical tempera-
ture of fluid components (Table 1). 
 
 
 
Parameters of intermolecular interactions 
Quite a number of interaction parameters for various molecules is summarized in the Appendix 
1. Little effort is needed to include a new component in the system if necessary. Here we de-
scribe some simple methods to estimate interaction Lennard-Jones parameters of neutral mole-
cules. 

For each pure fluid species, the EOS requires four parameters ε, σ, μ, α  to be evaluated from 
the experimental data. If thermodynamic data (PVT-data, phase equilibria) for a considered 
fluid are available then it is always advantageous to fit ε, σ, μ and α directly to the experimen-
tal results. As an alternative, these potential parameters can be derived from other experimental 
sources. Values for the electric dipole moment μ and the polarizability α of molecules in fluids 
are readily available from spectroscopy measurements. Parameters of the Lennard-Jones poten-
tial ε and σ can be derived from the experimental determination of the second virial coefficient 
or from fluid viscosities. However, both methods are suffering from the same kind of limita-
tions,. Parameters derived from experimental second virial coefficient data or fluid viscosities 
usually fail to describe the fluid properties at liquid-like densities or vapour-liquid equilibria 
(van Leeuwen, 1994). 

Because of these limitations, it seems advantageous to derive the values of the required pa-
rameters from phase equilibria. Liquid-vapour equilibria of pure fluids or critical properties are 
readily available. Potoff and Panagiotopoulos (1998) determined critical properties for a Len-
nard-Jones fluid by computer simulations. They reported values for the reduced (dimen-
sionless) critical temperature (Tc

*LJ = kTc / ε ), critical density ( ρc
*LJ = ρcσ

3 ) and critical pressure 
( Pc

*LJ = Pcσ
3 / ε ) of 1.312, 0.316 and 0.1279, respectively. Using these values and the critical 

temperature Tc of a real fluid, ε can be obtained with eq. (11) applying the corresponding-states 
theory (e.g., Prausnitz et al., 1999): 

 ε =
kTc

Tc
*LJ  (11) 

and σ can be derived from either with eqs. (12) or (13) using the critical density 

 σ 3 =
ρc

*LJ

ρc

 (12)  

or its critical pressure: 

 σ 3 =
Pc

*LJ

Pc

ε  (13) 

For real fluids, eqs. (12) and (13) provide slightly different values for σ. This difference can be 
considered as a measure of the validity of the Lennard-Jones model. The best agreement is ob-
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served for noble gases. For simple non-polar molecules, the difference in the obtained σ-values 
from critical pressure and density does not exceed 1-2%. For non-polar molecules which posess 
a strong quadrupole moment (e.g. CO2), the deviation is in the range of 4-5%. For highly polar 
molecules, this difference is up to 10%, indicating that the derivation using the Lennard-Jones 
approximation is unacceptable for such fluids.  

For polar molecular fluids, an effective method of determination of the Stockmayer potential 
parameters (Lennard-Jones plus dipole-dipole interaction), was introduced by van Leeuwen 
(1994). This method requires knowledge of the critical temperature Tc  and density of the boil-
ing liquid ρL,0.75  at the temperature 0.75·Tc. Based on results of computer simulations, the spe-
cific properties of a Stockmayer fluid were expressed as a function of the square of the reduced 
dipole moment μ*2: 

 Tc
*ST = 1.313 + 0.2999μ *2

− 0.2837ln(μ *2
+1) (14)  

 ρL,0.75
*ST = 0.7197 − 0.00362μ *2

+ 0.00666μ *4
− 0.00142μ *6

+ 0.0000863μ*8
 (15) 

were ρL,0.75
*ST  is the reduced density at 0.75·Tc: 

 ρL,0.75
*ST = σ 3ρ L,0.75  (16) 

μ*2 can be obtained from eq. (17) which is a combination of eqs. (10), (14), (15), (16) and the 
definition of the reduced temperature (Tc

*ST = kTc / ε ), if a value for μ is available.  

 μ*2
=

Tc
*ST

kTc

ρL,0.75

ρL,0.75
*ST μ 2  (17) 

Knowing μ*2, ε and σ can be calculated from eqs. (11,14,15,16). 

If the liquid density ρL,0.75
*ST  at T*= 0.75 is unknown, the critical density or pressure can be used 

instead and eq. (15) is replaced by either eq. (18) or (19) (van Leeuwen, 1994): 

 ρc
*ST = 0.3009 + 0.00785μ *2

− 00198μ *4
 (18)  

 Pc
*ST = 0.127 + 0.0023μ *2

 (19) 

The reduced dipole moment μ2* is then calculated by eq. (20) or (21), respectively. 
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The parameters ε and σ are then calculated in the same way as shown above. The latter ap-
proach, however, is less accurate (van Leeuwen, 1994). 
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It should be remembered that the corresponding state theory approach can be applied only to 
non-polar molecules (µ = 0). For such fluids, the terms dipdipA − , dipindA − in eq. (7) are zeros. 
However, the polarizabilities of non-polar molecules are non-zero. 

The approach of van Leeuwen (1994) for polar molecules requires also some additional as-
sumptions. According to this approach, the potential interaction energy of two molecules of the 
same kind is given by sum of the Lennard-Jones and the dipole-dipole interaction. The dipole-
induced dipole interaction is neglected ( dipindA −  = 0) and implicitly included in the Lennard-
Jones and dipole-dipole terms, i.e. the molecular polarizability α must be set to zero.  
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Appendix 1. Critical temperature, parameters of Lennard-Jones interaction, dipole moment and 
polarizability for selected molecules. 
 

 Τc 
[Κ] 

ε/k 
[K] 

σ 
[Å] 

μ 
[D] 

α 
[Å3] 

He 5.19 3.96 3.104 0.0 0.204956 
Ne 44.4 33.84 2.804 0.0 0.3956 
Ar 150.87 114.99 3.402 0.0 1.6411 
Kr 209.41 159.61 3.628 0.0 2.4844 
Xe 289.73 220.83 3.957 0.0 4.044 
F2 144.13 109.86 3.260 0.0 1.38 
Br2 588 448.17 4.055 0.0 7.02 
I2 819 624.24 4.333 0.0 10 
Cl2 416.9 317.76 4.012 0.0 4.61 
O2 154.59 117.83 3.371 0.0 1.5812 
S 1314 1001.52 4.361 0.0 2.9 
N2 126.21 96.20 3.615 0.0 1.7403 
H2 32.97 25.13 3.243 0.0 0.81 
CS2 552 420.73 4.495 0.0 8.74 
CO2 304.1282 * * 0.0 2.65 
CH4 190.53 145.22 3.732 0.0 2.593 
C2H6(ethane) 305.4 232.77 4.267 0.0 4.47 
C3H8(propane) 369.82 281.88 4.741 0.0 6.29 
C2H4(ethylene) 282.34 215.20 4.097 0.0 4.252 
C4H10(butane) 425.14 324.04 5.115 0.0 8.2 
BF3 260.8 198.78 3.923 0.0 3.31 
BCl3 455 346.80 5.006 0.0 9.38 
SiF4 259 197.41 4.444 0.0 5.45 
SiH4 269.7 205.56 3.744 0.0 5.44 
SiCl4 508.1 387.27 5.552 0.0 12 
H2O 647.096 192.814 2.97509 * * 
HBr 363.2 272.4 3.705 0.827 0.0 
HF 461.0 237.0 3.058 1.826 0.0 
NO2 431.2 328.1 3.431 0.316 0.0 
HCl 324.7 230.9 3.455 1.109 0.0 
HI 424.0 322.5 4.050 0.448 0.0 
NH3 405.4 200.0 3.294 1.849 0.0 
C3H6(propene) 364.9 277.7 4.490 0.366 0.0 
C4H8 (isobutene) 417.9 318.0 4.927 0.503 0.0 
SiClF3 307.7 233.5 4.715 0.686 0.0 
SiCl2 369.0 280.3 4.984 0.7329 0.0 
SiCl3 438.6 333.8 5.218 0.49 0.0 
N2O 309.6 235.7 3.658 0.161 0.0 
NO 180.0 137.0 3.094 0.159 0.0 
H2S 373.4 277.2 3.680 0.97 0.0 
SO2 430.8 302.7 3.903 1.633 0.0 
COS 378.8 286.9 4.099 0.715 0.0 
CO 132.9 101.2 3.623 0.11 0.0 
PH3 324.5 302.7 3.903 0.55 0.0 
HCN 456.7 149.7 3.796 2.984 0.0 

* Parameter depends on temperature: 
μH2O[D] =2.16312 +68.2631/(T +13.1904) 
α H2O[Å3]= 0.207114 +76.2066/(T+100.453) 
σ CO2[Å] 3.81773 – 0.2037820 *exp(–0.00101206*T) 
ε/k CO2[K]=192.192 – 136.307*exp(–0.00353196 *T) 
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Appendix 2. Temperature- and pressure corrections for pure fluid species as implemented 
in GEM-Selektor code 

 
The standard molar apparent Gibbs energy function go

T  of a fluid substance will be calculated 
first at reference pressure Pr = 1 bar and temperature of interest T ≠ Tr (reference temperature 
Tr = 298.15 K) using input data provided in the DComp record format: 

 ( ) ( ) ( )
2

2

2

2

10 22
ln

r

rr
r

r
r

o
T

o
T

o
T TT

TTaTTaTTT
TTaTTSGg

rr ⋅
−

−
−

−⎟
⎠
⎞⎜

⎝
⎛ +−−−−=          (A2-1) 

where a0, a1 and a2 are the Maier-Kelly coefficients of the Cp = f(T) dependence (details in the 
T-corrections.pdf document),  or Cp  =  a0  + a1T  +  a2 T -2 .  

The standard molar entropy and apparent enthalpy functions are also calculated as usual:  
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Next, the GC EoS built-in function is called for calculation of the molar volume and the fuga-
city of a pure fluid component (mole fraction χ = 1) at T and P of interest:  

,,,1(_, PTVolumeEoSV PT == χ Tc, ε/κ, σ, μ, α)           (A2-4)
 ,,,1(_1,, PTFugacityEoSf PT == χ Tc, ε/κ, σ, μ, α)           (A2-5) 

where Tc, ε/κ, σ, μ, α  are the input EoS parameters collected from the DComp format records 

(and summarized in the Appendix 1). Since, by definition, the fugacity coefficient P
f PT

f
,=γ : 
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o
TPT Hii ,, +=         (A2-7); 
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PT

o
TPT SSS ,, +=         (A2-8).  

Eqns (A2-7) and (A2-8) assume the values ex
PT

ex
PT SH ,, , to be computed as derivatives of ex

PTG , and 
returned by the EOS_Fugacity() functions (eqn A2-5). The reason for eqn (A2-7) is that in the 
GEM-Selektor code, the chemical potential of a j-th gas (fluid) mixture component is approxi-
mated (Karpov et al., 1997; 2001) as: 

 jj
PTj

j P
RT

g
γχυ lnlnln,, +++=              (A2-9).  

In other words, the non-ideality of j-th pure fluid component has to be incorporated into the gT,P 
term, whereas its non-ideal mixing with other fluid components (at the mole fraction χj < 1) can 
be described, as usual, by the activity coefficient term ln γj.  
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Appendix 3. Calculation of activity coefficients for components in the mixed fluid phase as 
implemented in the GEM-Selektor code 
 
The activity coefficient γj describes a deviation from Raoultian ideal behaviour of j-th compo-
nent in the mixed fluid phase at current fluid composition and T,P of interest. In other words, 
the activity coefficient of j-th species depends, in general, on the mole fractions of all other 
components at the fluid phase. Since these mole fractions are unknown at the beginning of cal-
culations, the values of γj  must be re-calculated at each iteration of the GEM algorithm. This is 
done by calling the built-in CG EoS functions as follows: 

 ,,,(_,,, PTFugacityEoSf PTj χχ = param ),       j ∈ LF      (A3-1),  

where fj,T,P,χ  is the fugacity of j-th component at χ, T, P of interest;  χ = {χ0, χ1 , χ2, … } stands 
for a vector of mole fractions of all n(LF) components of the fluid phase (forming a set LF), and 
param denotes a matrix of   Tc, ε/κ, σ, μ, α  parameters (one line per each fluid species) at T,P 
of interest.  

The activity coefficient of j-th component in the fluid mixture is calculated as follows from 
eqns (A2-7) and (A2-8): 

  
1,,,

,,,lnln
PTj

PTj
j f

f χγ =                (A3-2), 

where fj,T,P,1 is the fugacity of pure j-th component at T,P of interest, calculated previously us-
ing eqn (A2-5).  
 
The dipdipA − and dipindA −  terms in eq. (7) are explicit functions of fluid composition, tempera-
ture, density and (εi/κ, σ i, μ i, α i ) – parameters for pure fluids (Churakov and Gottschalk, 
2003b). In contrast, the Lennard-Jones contribution ),,,( mixmix

LJ TA εσρ  is originally designed 
for one component fluid. The Lennard-Jones contributions to the mixture are calculated using 
the van der Waals one-fluid theory: 

∑=
ij
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3
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σ
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where the cross terms σij and εij are calculated using eqns (5) and (6). 
 
 
References 
Karpov, I.K., Chudnenko, K.V., Kulik, D.A. (1997) Modeling chemical mass-transfer in geochemical 

processes: Thermodynamic relations, conditions of equilibria and numerical algorithms. Amer. J. 
Sci., 297, 767-806. 

Karpov I.K., Chudnenko K.V., Kulik D.A., Avchenko O.V., Bychinski V.A. (2001) Minimization of 
Gibbs free energy in geochemical systems by convex programming: Geochem. Internat., 39, 
1108-1119. 

 


