Part 1. Temperature corrections of standard molar thermodynamic properties of condensed substances and gases using data in DComp records of GEM-Selektor

This calculation is derived from integration of the heat capacity equation Cp = f(T) which has the following form:

$$Cp = a_0 + \sum_i a_i T^{n_i}, \quad i = 1, \dots, 9$$
 (1-1)

where a_i are the empirical coefficients, and power coefficients n_i are: $n_0 = 0$; $n_1 = 1$; $n_2 = -2$; $n_3 = -0.5$; $n_4 = 2$; $n_5 = 3$; $n_6 = 4$; $n_7 = -3$; $n_8 = -1$; $n_9 = 0.5$. Some of these terms are used in most published databases. The corresponding isobaric heat capacity equation is:

$$Cp = a_0 + a_1T + a_2 T^{-2} + a_3 T^{-0.5} + a_4 T^2 + a_5 T^3 + (1-2).$$

+ $a_6 T^4 + a_7 T^{-3} + a_8 T^{-1} + a_9 T^{0.5}.$

As known from chemical thermodynamics (e.g., Anderson and Crerar, 1993), the increment of standard molar Gibbs energy G^o at the reference pressure $P_r = 1$ bar from reference temperature T_r to temperature of interest T (in K) can be found by integrating the absolute molar entropy S^o :

$$G_{T}^{o} - G_{T_{r}}^{o} = -\int_{T_{r}}^{T} S_{T}^{o} dT$$
(1-3),

where $S_T^o = \int_0^T \frac{Cp}{T} dT = S_{T_r}^o + \int_{T_r}^T \frac{Cp}{T} dT$. Equation (1-3) can be transformed as follows:

$$G_{T}^{o} - G_{T_{r}}^{o} = -S_{T_{r}}^{o} \left(T - T_{r}\right) - \int_{T_{r}}^{T} \int_{T_{r}}^{T} Cp / T \, dT \, dT = -S_{T_{r}}^{o} \left(T - T_{r}\right) - T \sum_{i} M_{n_{i}} a_{i} \tag{1-4},$$

where the M_{n_i} terms stand for the Temkin-Shwarzman functions of temperature (Dorogokupets et al., 1988):

$$M_{n_i} = \frac{T^{n_i}}{n_i(n_i+1)} + \frac{T_r^{n_i+1}}{T(n_i+1)} - \frac{T_r^{n_i}}{n_i} \,.$$

Using these functions and coefficients n_i from eqn. (1-1), separate terms can be defined:

$$F_{G0} = TM_{o} = T \ln \frac{T}{T_{r}} - T + T_{r};$$

$$F_{G1} = TM_{1} = \frac{1}{2}(T - T_{r})^{2};$$

$$F_{G2} = TM_{-2} = (T - T_{r})^{2} / (2T \cdot T_{r}^{2});$$

$$F_{G3} = TM_{-0.5} = 2(\sqrt{T} - \sqrt{T_{r}})^{2} / \sqrt{T_{r}};$$

$$F_{G4} = TM_{2} = (T^{3} + 2T_{r}^{3} - 3T \cdot T_{r}^{2})/6;$$

^{1.} Temperature corrections for DComp thermodynamic data v.2.2 (D. Kulik and T. Wagner)

$$F_{G5} = TM_{3} = (T^{4} + 3T_{r}^{4} - 4T \cdot T_{r}^{3})/12;$$

$$F_{G6} = TM_{4} = (T^{5} + 4T_{r}^{5} - 5T \cdot T_{r}^{4})/20;$$

$$F_{G7} = TM_{-3} = (T_{r}^{3} - 3T^{2}T_{r} + 2T^{3})/(6T^{2}T_{r}^{3});$$

$$F_{G8} = TM_{-1} = T/T_{r} - 1 - \ln T/T_{r};$$

$$F_{G9} = TM_{0.5} = \frac{2}{3}(2T\sqrt{T} - 3T\sqrt{T_{r}} + T_{r}\sqrt{T_{r}}).$$

Now, the standard molar apparent Gibbs energy function g^o_T of a substance can be calculated easily at reference pressure $P_r = 1$ bar and temperature of interest $T \neq T_r$ (usually, reference temperature $T_r = 298.15$ K):

$$g_{T}^{o} = G_{T_{r}}^{o} - S_{T_{r}}^{o} (T - T_{r}) - T \sum_{i} M_{n_{i}} a_{i} =$$

$$= G_{T_{r}}^{o} - S_{T_{r}}^{o} (T - T_{r}) - a_{0} F_{G0} - a_{1} F_{G1} - a_{2} F_{G2} - a_{3} F_{G3} - a_{4} F_{G4} -$$

$$- a_{5} F_{G5} - a_{6} F_{G6} - a_{7} F_{G7} - a_{8} F_{G8} - a_{9} F_{G9}$$
(1-5)

In a similar way, the standard molar entropy S_T^o at P_r and T can be calculated

$$S_{T}^{o} = \int_{0}^{T} \frac{Cp}{T} dT = S_{T_{r}}^{o} + \int_{T_{r}}^{T} \frac{Cp}{T} dT = S_{T_{r}}^{o} + a_{0} \ln \frac{T}{T_{r}} + a_{1}(T - T_{r}) + \frac{1}{2} a_{2} \left(\frac{1}{T_{r}^{2}} - \frac{1}{T^{2}} \right) + 2a_{3} \left(\frac{1}{\sqrt{T_{r}}} - \frac{1}{\sqrt{T}} \right) + \frac{1}{2} a_{4}(T^{2} - T_{r}^{2}) + \frac{1}{3} a_{5}(T^{3} - T_{r}^{3}) + \frac{1}{4} a_{6}(T^{4} - T_{r}^{4}) + \frac{1}{3} a_{7} \left(\frac{1}{T_{r}^{3}} - \frac{1}{T^{3}} \right) + \frac{1}{4} a_{8} \left(\frac{1}{T_{r}} - \frac{1}{T} \right) + 2a_{9}(\sqrt{T} - \sqrt{T_{r}})$$

$$(1-6),$$

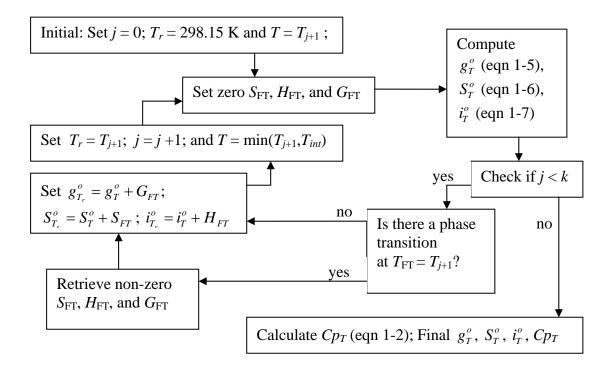
as well as the standard molar apparent enthalpy function i_T^o :

$$i_{T}^{o} = H_{T_{r}}^{o} + \int_{T_{r}}^{T} Cp \, dT = H_{T_{r}}^{o} + a_{0}(T - T_{r}) + \frac{1}{2}a_{1}(T^{2} - T_{r}^{2}) + a_{2}(\frac{1}{T_{r}} - \frac{1}{T}) + 2a_{3}(\sqrt{T} - \sqrt{T_{r}}) + \frac{1}{3}a_{4}(T^{3} - T_{r}^{3}) + \frac{1}{4}a_{5}(T^{4} - T_{r}^{4}) + \frac{1}{5}a_{6}(T^{5} - T_{r}^{5}) + (1-7)$$
$$\frac{1}{2}a_{7}(\frac{1}{T_{r}^{2}} - \frac{1}{T^{2}}) + a_{8}\ln\frac{T}{T_{r}} + \frac{2}{3}a_{9}(T\sqrt{T} + T_{r}\sqrt{T_{r}})$$

For any compound substance, the apparent molar g_T^o and i_T^o can be converted into standard molar Gibbs energy $G_{f,T}^o$ and enthalpy $H_{f,T}^o$ of formation from elements, respectively:

$$G_{f,T}^{o} = g_{T}^{o}(\text{compound}) - \sum g_{T}^{o}(\text{elements}); \qquad (1-8)$$

1. Temperature corrections for DComp thermodynamic data v.2.2 (D. Kulik and T. Wagner)


$$H_{f,T}^{o} = i_{T}^{o}(\text{compound}) - \sum i_{T}^{o}(\text{elements}).$$
(1-9)

It follows that at $T_r = 298.15$ K, $g_{298}^o = G_{f,298}^o$ and $i_{298}^o = H_{f,298}^o$ because, for any element at its standard state, $g_{T_r}^o = G_{f,T_r}^o = 0$ and $i_{T_r}^o = H_{f,T_r}^o = 0$ by convention. Note that in Selektor codes (as well as in SUPCRT92; Johnson et al., 1992), apparent molar functions g_T^o and i_T^o , but not the formation functions $G_{f,T}^o$ and $H_{f,T}^o$ are calculated throughout at elevated temperatures.

It is possible that, within a wide temperature range, the heat capacity function Cp = f(T) is approximated by more than one set of coefficients of the form eqns (1-1) and (1-2). In the DComp data format, up to 10 such sets are allowed, and each set of coefficients must be supplied with a temperature applicability interval $[T_{min}; T_{max}]$. No break is allowed within the whole temperature range covered by n(Q) sets; i.e. $T_{min}^{(q)} = T_{max}^{(q-1)}$, q > 0, q = 0, 1, ..., n(Q).

For simplicity, let T_0 be the lowest temperature for the first Cp approximation interval; T_1 be the upper temperature for the latter (T_0 to T_1) and at the same time – the lower boundary for the next interval (T_1 to T_2), and so on. Usually, T_0 equals 273.15 or 298.15 K, and some of the intermediate temperature boundaries refer also to temperatures of phase transitions at $P = P_r$.

Let *k* be the index of the temperature interval containing the temperature of interest T_{int} . Obviously, if k = 0 and $T_0 \le T_r < T_1$ then $T_0 \le T_{int} \le T_1$ and eqns (1-2) and (1-5) to (1-7) apply directly using the first set of Cp=f(T) coefficients. If k > 0 then the value of molar Cp at $T = T_{int}$ where $T_k \le T_{int} \le T_{k+1}$ is still found from eqn (1-2) applied directly to the *k*-th set of Cp coefficients. However, the values of g_T^o , i_T^o and S_T^o must be calculated incrementally in *k* loops, as shown in the flow chart below, which also includes accounting for optional molar increments S_{FT} , H_{FT} , G_{FT} at phase transitions. It is required that the temperature of any phase transition T_{FT} (at P_r) always co-insides with one of the boundary temperatures T_{j+1} .

Note that usage of GEM solvers of equilibria does not really require representing phase transitions in a single DComp record as for a single dependent component. Polymorph modifications, as well as solid, liquid and gaseous states of a substance can be represented as different phases or phase components (i.e. separate DComp records), because GEM will always select the most stable one at T,P of interest. Besides, this also allows circumventing the problem of pressure dependence of the phase transition temperature.

References

- Anderson G.M., Crerar D.A. (1993) *Thermodynamics in geochemistry: The equilibrium model*. Oxford Univ. Press, N.Y., Oxford.
- Dorogokupets P.I., Karpov I.K., Lashkevich V.V., Naigebauer V.A., Kazmin L.A. (1988) Isobaricisothermal potentials of minerals, gases and aqueous species in the "Selektor" program package. In: *Physicochemical models in geochemistry* (Kiselev A.I., Karpov I.K., eds.), Nauka Publ., Novosibirsk, p. 124-147 (in Russian).
- Johnson J.W., Oelkers E., Helgeson H.C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. *Comp. Geosci.*, **18**, 899-947.

Appendix 1.1. Built-in options for calculation of temperature and pressure correction to standard molar (partial molal) properties of condensed substances and fluids (gases) using data in DComp records (GEM-Selektor v. 3.0).

Code	Model	Input parameters
CSC	integration of heat capacity, constant molar volume	empirical Cp coefficients (a_0 to a_9) entered into aiCpT array; optional phase transition parameters entered into FT_p array
CSK	integration of heat capacity, mo- lar volume from empirical $V = f(T,P)$ function	empirical Cp coefficients (a_0 to a_9) entered into aiCpT array; 5 empirical coefficients for molar volume (a_0 , a_1 , a_3 , b_0 , b_1) entered into aiVTP array; optional phase transition parameters entered into FT_p array
CSE	integration of heat capacity, mo- lar volume from HP Birch- Murnaghan equation	empirical Cp coefficients (a_0 to a_9) entered into aiCpT array; isothermal compressibility and iso- baric expansibility into BetAlp fields
CHE	integration of heat capacity with Landau contribution, molar vol- ume from HP Birch-Murnaghan equation	empirical Cp coefficients (a_0 to a_9) entered into aiCpT array; isothermal compressibility and iso- baric expansibility into BetAlp fields; <i>Smax</i> and <i>Tcrit</i> of Lambda transition into LamST fields; <i>Vmax</i> into ab[0] field
CSB	integration of heat capacity, mo- lar volume from Birch- Murnaghan equation	empirical Cp coefficients (a_0 to a_9) entered into aiCpT array; coefficients of BM equation into ai0Dc array
CSS	integration of ideal gas heat ca- pacity, <i>VdP</i> contribution from Churakov-Gottschalk (CG) fluid EoS	empirical Cp coefficients (a_0 to a_9)entered into aiCpT array; coefficients of CG fluid EoS (<i>sig</i> , <i>eps</i> , <i>mu</i> , <i>alp</i>) into Cemp_s array
CSR	integration of ideal gas heat ca- pacity, <i>VdP</i> contribution from Peng-Robinson-Stryjek-Vera (PRSV) fluid EoS	empirical Cp coefficients (a_0 to a_9) entered into aiCpT array; coefficients of PRSV fluid EoS (Tc , Pc , ω , $k1$, $k2$, $k3$) into CritPg array
CS7	integration of ideal gas heat ca- pacity, <i>VdP</i> contribution from Peng-Robinson (PR78) fluid EoS	empirical Cp coefficients (a_0 to a_9) entered into aiCpT array; coefficients of PR78 fluid EoS (Tc , Pc , ω) into CritPg array
CS8	integration of ideal gas heat ca- pacity, <i>VdP</i> contribution from compensated Redlich-Kwong (CORK) fluid EoS	empirical Cp coefficients (a_0 to a_9) entered into aiCpT array; coefficients of CORK fluid EoS (Tc , Pc) into CritPg array; for H ₂ O and CO ₂ special built-in routines are used that are activated through the DComp species codes V (H ₂ O) and C (CO ₂)
CST	integration of ideal gas heat ca- pacity, <i>VdP</i> contribution from Soave-Redlich-Kwong (SRK) fluid EoS	empirical Cp coefficients (a_0 to a_9) entered into aiCpT array; coefficients of SRK fluid EoS (Tc , Pc , ω) into CritPg array

Appendix 1.2. Built-in options for calculation of temperature and pressure correction to standard molar (partial molal) properties of aqueous species (and water) using data in DComp records (GEM-Selektor v. 3.0).

Code	Model	Input parameters
CSA	integration of heat capacity, hy- dration properties of aqueous species from the Akinfiev- Diamond nonelectrolyte model	empirical Cp coefficients $(a_0 \text{ to } a_9)$ entered into aiCpT array; 3 coefficients of the Akinfiev- Diamond nonelectrolyte model (xi, a, b) into aiNEs array
HWF	water properties (stable state in single-phase fields, liquid prop- erties on two-phase curve) from Haar-Gallagher-Kell (HGK) model	only standard state data need to be provided; param- ters of HKF model in aiHKF array are all set to zero
HWG	properties of water vapor (on two-phase curve) from Haar- Gallagher-Kell (HGK) model	only standard state data need to be provided; param- ters of HKF model in aiHKF array are all set to zero
HKF	aqueous species properties from revised Helgeson-Kirkham- Flowers (HKF) model	coefficients of revised HKF model $(a_1, a_2, a_3, a_4, c_1, c_2, \omega_0)$ into aiHKF array (in their original calorie-based units)
НКР	prediction of HKF parameters of aqueous complexes using Parcor correlation algorithm	DComp record is automatically created from ReacDC calculation in PRONSPREP/Parcor mode. Only recalculation of DComp is required to obtain correct standard state properties. Upon this, the code will be automatically changed to HKF .